
Versioning strategy
for a complex internal API

Konstantin Yakushev

2014 – Everada – partner API

2015 – Timepad – public API

2016 – Badoo – internal API (apps)

Konstantin

Plan
Badoo API

Usual public API versioning

Our internal API versioning scheme

Practical considerations

The original, largest and leading
dating network

API
Evolving since 2010

RPC-style non-restful protobuf-based

570 commands

1200 classes

9 releases each week

~ 5 last versions
last iOS 7 version

~ 10 last versions
last Android 2.x version

~ 2 last versions
last WP7 version

Badoo versions

Versioning strategy
for a complex internal API

Konstantin Yakushev

Typical
versioning

1)http://api.example.com/orders

2) Collect nice-to-have breaking changes

3) Announce new version with all of them

4)http://api.example.com/v2/orders

5) Slowly deprecate v1

Typical versioning

http://api.example.com/v2/orders

http://api.example.com/orders/v2

http://api.example.com/orders
X-Api-Version: 2

http://api.example.com/orders
Accepts: application/vnd.example.v2+json

Typical versioning

1)http://api.example.com/orders

2) Collect nice-to-have breaking changes

3) Announce new version with all of them

4)http://api.example.com/v2/orders

5) Slowly deprecate v1

Typical versioning

The least important step

1)http://api.example.com/orders

2) Collect nice-to-have breaking changes

3) Announce new version with all of them

4)http://api.example.com/v2/orders

5) Slowly deprecate v1

Typical versioning

There is no v2

Continuous
versioning

Problem:
new property
supersedes old

Verification�

Verification✅

user: {
is_verified: true | false

}

user: {
verification_status: NONE | PARTIAL | FULL

}

user: {
is_verified: true | false

}

user: {
is_verified: true | false
verification_status: NONE | PARTIAL | FULL

}

user_request: { // like GraphQL
fields: [verification_status]

}

user: {
verification_status: NONE | PARTIAL | FULL

}

user_request: { // like GraphQL
fields: [is_verified]

}

user: {
is_verified: true | false

}

Problem:
new property
supersedes old
Add a new field.

Make clients select which fields they want.

Problem:
similar structures
of different types

Badoo has
34 types
of banners

banner: {
header: "Get extra…",
pictures: [<pics>],
text: "Make it easy…",
buttons: [<button>]

}

banner: {
header: "Get extra…",
pictures: [<pics>],
text: "Make it easy…",
buttons: [<button>],
type: "EXTRA_SHOWS"

}

user_list_request: {
fields: [banners]

}

user_list: {
banners: [<unknown banner>]

}

user_list_request: {
fields: [banners_v24]

}

user_list: {
banners_v24: [<banner>]

}

user_list_request: {
fields: [banners],
supported_banners: [EXTRA_SHOWS]

}

user_list: {
banners: [<extra shows banner>]

}

Client
specifics
This banner is mobile-only.
Simply not set as supported
by desktop web.

Problem:
similar structures
of different types
Release a new thing on server whenever.

Make clients send supported types explicitly.

Problem:
business logic
changes

user_request: {
fields: [photos]

}

user: {
photos: [<photo 1>, <photo 2>]

}

user_request: {
fields: [photos],
supported_changes: [VIDEOS_IN_PHOTOS]

}

user: {
photos: [<photo 1>, <video 1>, <photo 2>, …]

}

API Refactoring!
Generalize: Buttons array instead of one button
Change global logic: Supports concrete error
types instead of generic error
Cover screw ups: All dates are now UTC

Problem:
business logic
changes
Do changes behind version flag.
Make client control those flags.

Problem:
simultaneous
release on clients

Video
calling

Release plan
Web – releases Sept 3

Android – releases Sept 1

Windows – releases Aug 20

iOS – releases Sept 7

startup_request: {
supported_features: [VIDEO_CALLS, GIFS]

}

startup: {
allowed_features: [GIFS] // client will turn

// video calls off
}

startup_request: {
supported_features: [VIDEO_CALLS, GIFS]

}

startup: {
allowed_features: [GIFS, VIDEO_CALLS]

// feature released
}

Negotiate feature
Simultaneous launch
A/B-tests
Spam-filtering
Split paid/unpaid users

Problem:
simultaneous
release on clients
Negotiate feature with server.

Once you see that enough clients support it,
launch.

Problem:
quick experiments

What’s my
chances

https://bit.ly/badoo-wp

user: {
verified_status: NONE | PARTIAL | FULL,

}

user: {
verified_status: NONE | PARTIAL | FULL,
experimental_chances: 57, // only on windows

}

Problem:
quick experiments
Create a superset experimental API

Use it only on one platform

1)http://api.example.com/orders

2) Collect nice-to-have breaking changes

3) Announce new version with all of them

4)http://api.example.com/v2/orders

5) Slowly deprecate v1

Typical versioning

Continuous
versioning
0. Add new fields for new features

1. Have a list of supported things

2. Cover changes with a change flag

3. Let server control enabling and disabling

4. Create supersets of APIs for experimenting

On practice?

On practice
257 feature flags

161 negotiable features

Apified web client in 2015

On practice
Architects can do refactoring all the time

Client developers can do only minimal changes

Product owners can get exactly what they want

Backend developers …

Suggest
upgrading

Force
upgrading

Dashboard
4.44 4.43 4.42 4.41 3.57

VIDEOS_IN_PHOTOS + +
BUTTONS_ARRAY + + + + +
ALL_DATES_ARE_UTC

On practice
Architects can do refactoring all the time

Client developers can do only minimal changes

Product owners can get exactly what they want

Backend developers can still work sanely and
easily split in parallel

Thank you!

http://no-v2.kojo.ru

